Role of facilitative glucose transporters in diffusional water permeability through J774 cells

نویسندگان

  • J D Loike
  • L Cao
  • K Kuang
  • J C Vera
  • S C Silverstein
  • J Fischbarg
چکیده

We have reported previously that in the presence of an osmotic gradient, facilitative glucose transporters (GLUTs) act as a transmembrane pathway for water flow. Here, we find evidence that they also allow water passage in the absence of an osmotic gradient. We applied the linear diffusion technique to measure the diffusional permeability (Pd) of tritiated water (3H-H2O) through plasma membranes of J774 murine macrophage-like cells. Untreated cells had a Pd of 30.9 +/- 1.8 microns/s; the inhibitors of facilitative glucose transport cytochalasin B (10 microM) and phloretin (20 microM) reduced that value to 15.3 +/- 1.8 (50%) and 11.0 +/- 0.7 (62%) microns/s, respectively. In contrast, no significant effect on Pd was observed in cells treated with dihydrocytochalasin B (Pd = 28.4 +/- 1.5 microns/s). PCMBS (3 mM) inhibited glucose uptake by greater than 95%, and 3H-H2O diffusion by approximately 30% (Pd = 22.9 +/- 1.5 microns/s). The combination of cytochalasin B plus pCMBS reduced Pd by about 87% (Pd = 3.9 +/- 0.3 microns/s). Moreover, 1 mM pCMBS did not affect the osmotic water permeability in Xenopus laevis oocytes expressing the brain/erythroid form of facilitative glucose transporters (GLUT1). These results indicate for the first time that about half of the total Pd of J774 cells may be accounted for by water passage across GLUTs. Hence, they highlight the multifunctional properties of these transporters serving as conduits for both water and glucose. Our results also suggest for the first time that pCMBS blocks glucose transport without affecting water permeation through GLUTs. Lastly, because pCMBS decreases the Pd of J774 cells, this suggests the presence in their plasma membranes of another protein(s) exhibiting water channel properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that the glucose transporter serves as a water channel in J774 macrophages.

Water transport across plasma membranes is a universal property of cells, but the route of such transport is unclear. In this study, volume changes of cells of the J774 murine macrophage-like cell line were monitored by recording the intensity of light scattered by the cells. We investigated the effects of several inhibitors of glucose transport on cell membrane osmotic water permeability as ca...

متن کامل

Optical measurement of osmotic water transport in cultured cells. Role of glucose transporters

Methodology was developed to measure osmotic water permeability in monolayer cultured cells and applied to examine the proposed role of glucose transporters in the water pathway (1989. Proc. Natl. Acad. Sci. USA. 86:8397-8401). J774 macrophages were grown on glass coverslips and mounted in a channel-type perfusion chamber for rapid fluid exchange without cell detachment. Relative cell volume wa...

متن کامل

Glucose transporters serve as water channels.

Water traverses the plasma membranes of some eukaryotic cells faster than can be explained by the water permeability of their lipid bilayers. This has led to a search for a water channel. Our previous work identified glucose transporters as candidates for such a channel. We report here that Xenopus laevis oocytes injected with mRNA encoding the brain/Hep G2, adult skeletal muscle/adipocyte, or ...

متن کامل

Diffusional water permeability of human erythrocytes and their ghosts

The diffusional water permeability of human red cells and ghosts was determined by measuring the rate of tracer efflux by means of an improved version of the continuous flow tube method, having a time resolution of 2-3 ms. At 25 degrees C, the permeability was 2.4 x 10(3) and 2.9 x 10(3) cm s-1 for red cells and ghosts, respectively. Permeability was affected by neither a change in pH from 5.5 ...

متن کامل

Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.

The cellular accumulation of vitamin C, a substance critical to human physiology, is mediated by transporters located at the cell membrane, and is regulated in a cell-specific manner. Neoplastic cells may have special needs for vitamin C. Therefore, we investigated the transport of vitamin C in a human myeloid leukemia cell line (HL-60). The HL-60 cells lacked the capacity to transport the redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 102  شماره 

صفحات  -

تاریخ انتشار 1993